Regression inference folder

operators.ml3d.regression_inference_folder(client, folder_in_folder_points='/folder_in_folder_points', folder_out_folder_predictions='/folder_out_folder_predictions', in_model_path='parameters_model', worker_instance_type='x2large', manager_instance_type='small', extension_in_folder_points='.laz', extension_out_folder_predictions='.laz', skip_existing_files=False)

regression_inference_folder(client,
in_folder_points=’/in_folder_points’,
out_folder_predictions=’/out_folder_predictions’,
in_model_path=’parameters_model’,
worker_instance_type=’x2large’,
manager_instance_type=”small”,
extension_in_folder_points=”.data_train/points”,
extension_out_folder_predictions=”.data_train/predictions”,
skip_existing_files = False )
Parameters:
  • in_model_path – model path

  • folder_in_folder_points – input directory with training data

  • folder_out_folder_predictions – output directory with predictions

  • worker_instance_type – cloud instance type of worker nodes

  • manager_instance_type – cloud instance type of manager node

  • extension_in_folder_points – File extension of files in folder for folder_in_folder_points

  • extension_out_folder_predictions – File extension of files in folder for folder_out_folder_predictions

  • skip_existing_files – skip files that already exist in the output folder