Regression inference folder
- operators.ml3d.regression_inference_folder(client, folder_in_folder_points='/folder_in_folder_points', folder_out_folder_predictions='/folder_out_folder_predictions', in_model_path='parameters_model', worker_instance_type='x2large', manager_instance_type='small', extension_in_folder_points='.laz', extension_out_folder_predictions='.laz', skip_existing_files=False)
- regression_inference_folder(client,in_folder_points=’/in_folder_points’,out_folder_predictions=’/out_folder_predictions’,in_model_path=’parameters_model’,worker_instance_type=’x2large’,manager_instance_type=”small”,extension_in_folder_points=”.data_train/points”,extension_out_folder_predictions=”.data_train/predictions”,skip_existing_files = False )
- Parameters:
in_model_path – model path
folder_in_folder_points – input directory with training data
folder_out_folder_predictions – output directory with predictions
worker_instance_type – cloud instance type of worker nodes
manager_instance_type – cloud instance type of manager node
extension_in_folder_points – File extension of files in folder for folder_in_folder_points
extension_out_folder_predictions – File extension of files in folder for folder_out_folder_predictions
skip_existing_files – skip files that already exist in the output folder